
Gradients for an RNN

Carter N Brown

January 4, 2017
Last Edited: June 6, 2017

1 Overview

In this document we will go through the derivation of the gradient for an Recurrent Neural
Network (RNN). The formalism and names for everything are consistent with WildML’s RNN
tutorial. The purpose is to walk through the math in the tutorial in greater detail.

1.1 RNN Recap

The RNN structure can be seen below (image from WildML):

Figure 1: RNN structure and its unfolding

The equations for st and ot are:

st = tanh(Uxt +Wst−1), (1a)

ŷt = softmax(V st). (1b)

Our loss function is:

L(y, ŷ) = − 1

N

∑
t

yt log ŷt. (2)

For the sake of computational ease later, we define:

Et = −yt log ŷt. (3)

N.B. that the loss functions are dot products between the vectors yt and element-wise logarithm
of ŷt

1

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/


1.2 Math Recap

The important math concepts here are Einstein Summation, chain rule, and matrix derivatives.
For the summation notation, we won’t be concerned with the dual basis, i.e. all indices will be
on the bottom of the variable for ease. N.B. we will not denote vectors or matrices with either
arrows or boldface.

Einstein summation notation is useful here to help manage the chain rule and matrix deriva-
tives. For example, suppose we have a function f(x, y) where x, y ∈ RN . Furthermore, suppose
that x and y are functions of r ∈ R, i.e. x = x(r) and y = y(r). Then,

∂f

∂r
=

∂f

∂xi

∂xi
∂r

+
∂f

∂yj

∂yj
∂r

(4)

where we sum over the dummy indices i and j. Here ”dummy” means that they’re only being
summed over, i.e. they aren’t a key part of the definition. An example of an index that isn’t a
dummy is m in the equation vm = Tmnun (while n is a dummy index).

A useful sanity checks is whether the left and right sides of the equation have the same free
indices, i.e. indices that are not summed over. In our chain rule example (4) the left side has
no indices, and the right side has no free indices. In our second example, with vm, both the left
and right have m as a free index and no others.

A nice rule of thumb for chain rule here comes with summed indices: For each pair, one
index will appear in the numerator of a derivative and the other will appear in the denominator
of a derivative.

Now, suppose we have a matrix V ∈ RN×M and a function g(M), and we want ∂g
∂V . Then,(

∂g

∂V

)
ij

=
∂g

∂Vij
. (5)

Now we can use our new summation notation to clarify definition (3) for our loss function as

Et = −yti log ŷti (6)

2 Gradient Calculations

The parameters of our RNN are U, V , and W , so we must compute the gradient of our loss
function with respect to these matrices. This will be done in order of increasing difficulty.

2.1 V

The parameter V is present only in the function ŷ. Let qt = V st. Then,

∂Et

∂Vij
=
∂Et

∂ŷtk

∂ŷtk
∂qtl

∂qtl
∂Vij

. (7)

From our definition of Et (6), we have that

∂Et

∂ŷtk
= −ytk

ŷtk
. (8)

Our function ŷ is just the softmax function and has the same gradient as sigmoid, so

∂ŷtk
∂qtl

=

{
−ŷtk ŷtl , k 6= l
ŷtk (1− ŷtk) , k = l

. (9)

2

http://planetmath.org/einsteinsummationconvention


Putting together (8) and (9) gives us a sum over all values of k to obtain ∂Et
∂qtl

:

−ytl
ŷtl
ŷtl (1− ŷtl) +

∑
k 6=l

(
−ytk
ŷtk

)
(−ŷtk ŷtl) = −ytl + ytl ŷtl +

∑
k 6=l

ytk ŷtl (10a)

= −ytl + ŷtl
∑
k

ytk . (10b)

And, if you’ll recall that yt are all one-hot vectors, then that sum is just equal to 1, so

∂Et

∂qtl
= ŷtl − ytl (11)

Lastly, qt = V st, so qtl = Vlmstm . Then,

∂qtl
∂Vij

=
∂

∂Vij
(Vlmstm) (12a)

= δilδjmstm (12b)

= δilstj . (12c)

Now we combine (11) and (12c) to obtain:

∂Et

∂Vij
= (ŷti − yti) stj , (13)

which is recognizable as the outerproduct. Hence,

∂Et

∂V
= (ŷt − yt)⊗ st, (14)

where ⊗ is the outer product.

2.2 W

The parameter W appears in the argument for st, so we will have to check the gradient in both
st and ŷt. We must also make note that ŷt depends on W both directly and indirectly (through
st−1). Let zt = Uxt +Wst−1. Then st = tanh(zt).

At first it seems that by the chain rule we have:

∂Et

∂Wij
=
∂Et

∂ŷtk

∂ŷtk
∂qtl

∂qtl
∂stm

∂stm
∂Wij

(15)

Note that of these four terms, we have already calculated the first two, and the third is simple:

∂qtl
∂stm

=
∂

∂stm
(Vlbstb) (16a)

= Vlbδbm (16b)

= Vlm. (16c)

The final term, however, requires us to notice that there is an implicit dependence of st on Wij

through st−1 as well as a direct dependence. Hence, we have

∂stm
∂Wij

→ ∂stm
∂Wij

+
∂stm
∂st−1n

∂st−1n
∂Wij

. (17)

3



But we can just apply this again to yield:

∂stm
∂Wij

→ ∂stm
∂Wij

+
∂stm
∂st−1n

∂st−1n
∂Wij

+
∂stm
∂st−1n

∂st−1n
∂st−2p

∂st−2p
∂Wij

. (18)

This process continues until we reach s−1, which was initialized to a vector of zeros. Notice that

the last term in (18) collapses to ∂stm
∂st−2n

∂st−2n
∂Wij

and we can turn the first term into ∂stm
∂stn

∂stn
∂Wij

.

Then, we arrive at the compact form

∂stm
∂Wij

=
∂stm
∂srn

∂srn
∂Wij

, (19)

where we sum over all values of r less than t in addition to the standard dummy index n. More
clearly, this is written as:

∂stm
∂Wij

=
t∑

r=0

∂stm
∂srn

∂srn
∂Wij

, (20)

which the referenced WildML tutorial indicates as the term responsible for the vanishing gra-
dient problem.
Combining all of these yields:

∂Et

∂Wij
= (ŷtl − ytl)Vlm

t∑
r=0

∂stm
∂srn

∂srn
∂Wij

. (21)

2.3 U

Taking the gradient of U is similar to doing it for W since they both require taking sequential
derivativs of an st vector. We have

∂Et

∂Uij
=
∂Et

∂ŷtk

∂ŷtk
∂qtl

∂qtl
∂stm

∂stm
∂Uij

. (22)

Note that we only need to calculate the last term now. Following the same procedure as for W ,
we find that

∂stm
∂Uij

=
t∑

r=0

∂stm
∂srn

∂srn
∂Uij

, (23)

and thus we have:
∂Et

∂Uij
= (ŷtl − ytl)Vlm

t∑
r=0

∂stm
∂srn

∂srn
∂Uij

. (24)

The difference between U and W appears in the actual implementation since the values of
∂srn
∂Uij

and ∂srn
∂Wij

differ.

2.4 Total Gradient

Since our loss function (2) is just a summation of the Et’s, we can just sum up these values
we’ve calculated over all relevant time-steps for a given backprop to calculate our total gradient.

4


	Overview
	RNN Recap
	Math Recap

	Gradient Calculations
	V
	W
	U
	Total Gradient


